9x^2-1=(3x+1)*(2x+5)

Simple and best practice solution for 9x^2-1=(3x+1)*(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2-1=(3x+1)*(2x+5) equation:



9x^2-1=(3x+1)(2x+5)
We move all terms to the left:
9x^2-1-((3x+1)(2x+5))=0
We multiply parentheses ..
9x^2-((+6x^2+15x+2x+5))-1=0
We calculate terms in parentheses: -((+6x^2+15x+2x+5)), so:
(+6x^2+15x+2x+5)
We get rid of parentheses
6x^2+15x+2x+5
We add all the numbers together, and all the variables
6x^2+17x+5
Back to the equation:
-(6x^2+17x+5)
We get rid of parentheses
9x^2-6x^2-17x-5-1=0
We add all the numbers together, and all the variables
3x^2-17x-6=0
a = 3; b = -17; c = -6;
Δ = b2-4ac
Δ = -172-4·3·(-6)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-19}{2*3}=\frac{-2}{6} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+19}{2*3}=\frac{36}{6} =6 $

See similar equations:

| 9x62-1=(3x+1)*(2x+5) | | 10x+x+3=0 | | -7=3-4x/3 | | -7=3−4x/3 | | 6x-3+7=6x-3-4+8x | | b^2-24b+140=0 | | 0.3(0.5x-3.2)=0.05x-2.4 | | 0.3(0.5x-3.2)=0.05-2.4 | | X×y=41 | | 12−x=-2 | | 2.5x-1.45=1.5x+3.25 | | -5+6x=-4 | | -4x-19=-7 | | 1.8x+32=101.3 | | 15+-6x=-7 | | m/8=-8 | | -0.7x-2.8=0 | | 23-5x=0 | | 8x-30,000=0 | | 5(x=9)=15 | | 15-x-7=12 | | -7x-15=12 | | -6x-14=-3 | | 4+3*15=x | | -3x+28=0 | | 8(7+a)=-4a+8(3a-8) | | f(-1)=-1³+3(-1)²-4(-1)+5 | | 52-3v=5v+4 | | 2(x)+2(90)=400 | | 2(x)+2(60)=550 | | (x-2)²=4 | | (y+4)×(y-8)=0 |

Equations solver categories